Outlier Detection with Kernel Density Functions
نویسندگان
چکیده
Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel unsupervised algorithm for outlier detection with a solid statistical foundation is proposed. First we modify a nonparametric density estimate with a variable kernel to yield a robust local density estimation. Outliers are then detected by comparing the local density of each point to the local density of its neighbors. Our experiments performed on several simulated data sets have demonstrated that the proposed approach can outperform two widely used outlier detection algorithms (LOF and LOCI).
منابع مشابه
Generalized Outlier Detection with Flexible Kernel Density Estimates
We analyse the interplay of density estimation and outlier detection in density-based outlier detection. By clear and principled decoupling of both steps, we formulate a generalization of density-based outlier detection methods based on kernel density estimation. Embedded in a broader framework for outlier detection, the resulting method can be easily adapted to detect novel types of outliers: ...
متن کاملOnline Bivariate Outlier Detection in Final Test Using Kernel Density Estimation
In parametric IC testing, outlier detection is applied to filter out potential unreliable devices. Most outlier detection methods are used in an offline setting and hence are not applicable to Final Test, where immediate pass/fail decisions are required. Therefore, we developed a new bivariate online outlier detection method that is applicable to Final Test without making assumptions about a sp...
متن کاملDirect Density Ratio Estimation with Convolutional Neural Networks with Application in Outlier Detection
Recently, the ratio of probability density functions was demonstrated to be useful in solving various machine learning tasks such as outlier detection, non-stationarity adaptation, feature selection, and clustering. The key idea of this density ratio approach is that the ratio is directly estimated so that difficult density estimation is avoided. So far, parametric and non-parametric direct den...
متن کاملContinuous Adaptive Outlier Detection on Distributed Data Streams
In many applications, stream data are too voluminous to be collected in a central fashion and often transmitted on a distributed network. In this paper, we focus on the outlier detection over distributed data streams in real time, firstly, we formalize the problem of outlier detection using the kernel density estimation technique. Then, we adopt the fading strategy to keep pace with the transie...
متن کاملAdaptive kernel density-based anomaly detection for nonlinear systems
This paper presents an unsupervised, density-based approach to anomaly detection. The purpose is to define a smooth yet effective measure of outlierness that can be used to detect anomalies in nonlinear systems. The approach assigns each sample a local outlier score indicating how much one sample deviates from others in its locality. Specifically, the local outlier score is defined as a relativ...
متن کامل